
OpenAD update

Jean Utke1

1University of Chicago and Argonne National Laboratory

CCSM Workshop
June 30, 2010

CCSM Workshop 2010
Utke :”OpenAD update”, 1

update on OpenAD tool - new frontend

current frontend is Open64

Open

Analysis

whirl

SageTo

XAIF

xerces

boost

Angel

Sage3
EDG/front − ends

XAIF

(AD source transformation)

xaifBooster

FortTk

Open

Open64

AD/

Fortran pipeline:

whirl2xaif xaif2whirl

F’

whirlF’

xaifxaifF

Fwhirl

F

xaifBooster

F’

OpenAnalysis

Open64

CCSM Workshop 2010
Utke :”OpenAD update”, 2

move to Rose frontend II

Open64 front-end was split off from main trunk (U of Delaware and Pathscale) 9
years ago by Rice U
is open source (but in parts inscrutable)
was maintained until 3 years ago by Rice U but never updated from main trunk
therefore not maintainable for newer Fortran features
Rose is the only open source alternative suitable for our source transformation
purpose
uses the Fortran parser by Craig Rasmussen, LANL
Rose compiler infrastucture is maintained by Dan Quinlan, LBNL + others
also provides the C/C++ frontend (EDG, binary distribution) for ADIC
move to Rose underway

reimplement analysis interfaces
reimplement interface to OpenAD transformation engine
debug Fortran parser / Rose AST functionality

meanwhile maintain existing OpenAD to differentiate models from NE, NP, etc.

... but since I got the chance to say something at this workshop

CCSM Workshop 2010
Utke :”OpenAD update”, 3

move to Rose frontend II

Open64 front-end was split off from main trunk (U of Delaware and Pathscale) 9
years ago by Rice U
is open source (but in parts inscrutable)
was maintained until 3 years ago by Rice U but never updated from main trunk
therefore not maintainable for newer Fortran features
Rose is the only open source alternative suitable for our source transformation
purpose
uses the Fortran parser by Craig Rasmussen, LANL
Rose compiler infrastucture is maintained by Dan Quinlan, LBNL + others
also provides the C/C++ frontend (EDG, binary distribution) for ADIC
move to Rose underway

reimplement analysis interfaces
reimplement interface to OpenAD transformation engine
debug Fortran parser / Rose AST functionality

meanwhile maintain existing OpenAD to differentiate models from NE, NP, etc.

... but since I got the chance to say something at this workshop
CCSM Workshop 2010
Utke :”OpenAD update”, 4

part 2 - things to consider for a code to be “adjointed”

ingredients for adjoints:

reverse data dependencies, call structure, control flow

done using a (partial) execution trace (needs lots of memory)

memory requirements mitigated by recomputation from checkpoints

Some language features make the above harder / less efficient than other
programming idioms that yield the same semantics!
(e.g. compare to compiler vectorization)

CCSM Workshop 2010
Utke :”OpenAD update”, 5

Structured vs. Unstructured Control Flow
think - GOTO, alternative ENTRY, early RETURN,

structured control flow is characterizable by some control flow graph
properties; permits structured reverse control flow!

simple view: use only loops and branches and no other control flow
constructs (some things are easily fixable though, e.g. turn STOPs into some error routine call ,...)

example: early return from within a loop (CFG left, adjoint CFG right)

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

Entry(10)

B(9)''

pB

Branch(8)

B(4)''

 T

pLc

 F

Loop(7)

B(6)''

 T

EndBranch(3)

F

EndLoop(5)B(2)''

Exit(1)

Entry

all is fine without the red arrow

by inspection: adjoint needs alternative ENTRY
(or GOTO); but difficult to automate in general

need to trace more control flow path details

unstructured control flow is bad for compiler
optimization, already for the original model!

possible generic but inefficient fallback: trace
enumerated basic blocks, replay inverse trace
with GOTO <blockId> (no branches/loops left, more

memory needed for trace)

CCSM Workshop 2010
Utke :”OpenAD update”, 6

Reversal/Checkpointing and non-contiguous data

“contiguous” data: scalars, arrays (even with stride > 1), strings,
structures,...

“non-contiguous” data: linked lists, rings, structures with pointers,...

reversing p=p->next; needs backpointers or store the equivalent

checkpointing is very similar to “serialization” (of data to disk)

Problem: decide when to follow a pointer and save what we point to
A

A

A

A

A

A

B

C
DD

E

(big)

unless we have extra info this is not decidable at source transformation
time

possible fallback: runtime bookkeeping of things that have been saved
(is computationally expensive)

CCSM Workshop 2010
Utke :”OpenAD update”, 7

Semantically Ambiguous Data

e.g. EQUIVALENCE (or its C counterpart union)
data dependence analysis: dependencies propagate from one variable to all
equivalenced variables
“activity” (i.e. the need to generate adjoint code for a variable) leaks to all
equivalenced variables whether appropriate or not

work-arrays (multiple, semantically different fields are put into a (large)
work-array); access via index offsets

data dependence analysis: there is array section analysis but in practice it
is often not good enough to reflect the implied semantics
the entire work-array may become active / checkpointed

programming patterns where the analysis has no good way to track the
data dependencies:

data transfer via files
(don’t really want to assume all read data depends on all written data)
void* interfaces: exchanging data that is identified by “string” + cast

CCSM Workshop 2010
Utke :”OpenAD update”, 8

Dynamic Memory

dynamic memory is “easy” as long as nothing is deallocated before the
adjoint sweep is complete OR no pointers point to allocated memory.

prefer ALLOCATABLE instead of allocating space to a POINTER
because the implied properties allow tighter analysis (and better code
optimization by the compiler).

CCSM Workshop 2010
Utke :”OpenAD update”, 9

summary

most of the work goes to the Rose move

initial analysis done for glimmer-cism (before the merge) w J. Campbell

have started with small prototype models with Patrick Heimbach

CCSM Workshop 2010
Utke :”OpenAD update”, 10

